Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity.
نویسندگان
چکیده
Nonalcoholic fatty liver disease (NAFLD) and obesity are characterized by altered gut microbiota, inflammation, and gut barrier dysfunction. Here, we investigated the role of mucin-2 (Muc2) as the major component of the intestinal mucus layer in the development of fatty liver disease and obesity. We studied experimental fatty liver disease and obesity induced by feeding wild-type and Muc2-knockout mice a high-fat diet (HFD) for 16 wk. Muc2 deficiency protected mice from HFD-induced fatty liver disease and obesity. Compared with wild-type mice, after a 16-wk HFD, Muc2-knockout mice exhibited better glucose homeostasis, reduced inflammation, and upregulated expression of genes involved in lipolysis and fatty acid β-oxidation in white adipose tissue. Compared with wild-type mice that were fed the HFD as well, Muc2-knockout mice also displayed higher intestinal and plasma levels of IL-22 and higher intestinal levels of the IL-22 target genes Reg3b and Reg3g. Our findings indicate that absence of the intestinal mucus layer activates the mucosal immune system. Higher IL-22 levels protect mice from diet-induced features of the metabolic syndrome.
منابع مشابه
ITCH deficiency protects from diet-induced obesity.
Classically activated macrophages (M1) secrete proinflammatory cytokine and are predominant in obese adipose tissue. M2 macrophages, prevalent in lean adipose tissue, are induced by IL-13 and IL-4, mainly secreted by Th2 lymphocytes, and produce the anti-inflammatory cytokine IL-10. ITCH is a ubiquitously expressed E3 ubiquitin ligase involved in T-cell differentiation and in a wide range of in...
متن کاملDeficiency for Costimulatory Receptor 4-1BB Protects Against Obesity-Induced Inflammation and Metabolic Disorders
OBJECTIVE Inflammation is an important factor in the development of insulin resistance, type 2 diabetes, and fatty liver disease. As a member of the tumor necrosis factor receptor superfamily (TNFRSF9) expressed on immune cells, 4-1BB/CD137 provides a bidirectional inflammatory signal through binding to its ligand 4-1BBL. Both 4-1BB and 4-1BBL have been shown to play an important role in the pa...
متن کاملLoss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance.
The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD), we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L-/- mice). Paradoxica...
متن کاملY2Y4 receptor double knockout protects against obesity due to a high-fat diet or Y1 receptor deficiency in mice.
Neuropeptide Y receptors are critical regulators of energy homeostasis, but the functional interactions and relative contributions of Y receptors and the environment in this process are unknown. We measured the effects of an ad libitum diet of normal or high-fat food on energy balance in mice with single, double, or triple deficiencies of Y1, Y2, or Y4 receptors. Whereas wild-type mice develope...
متن کاملMomordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice
Objective(s): The present study was aimed to evaluate the effect of methanolic fruit extract of Momordica cymbalaria (MeMC) against high-fat diet-induced obesity and diabetes in C57BL/7 mice.Materials and Methods: In the present study, six weeks old male C57BL/6 mice were divided into four groups. G-1 and G-2 served as lean control and HFD control, G-3 and G-4 received MeMC 25 and 50 mg/kg, BW ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 310 5 شماره
صفحات -
تاریخ انتشار 2016